Real-Time Through-Wall Imaging Using an Ultrawideband Multiple-Input Multiple-Output (MIMO) Phased-Array Radar System

G. L. Charvat, T. S. Ralston, and J. E. Peabody

Aerospace Sensor Technology Group

This work was sponsored by the Department of the Air Force under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.
Locating moving objects through walls increases situational awareness

TDM MIMO Through-Wall Radar
- Stand alone sensor
- Continuous surveillance
- Video frame-rate imaging
- High resolution, S-band (2-4 GHz)
- Real aperture (no ambiguous returns due to sparse aperture)
- Reasonable size, fits on truck
- Range gate and coherent change detection mitigates clutter

1. Radar vehicle deployed for search mission
2. Operator starts radar
3. Human locations in house shown on screen continuously
Background

Modeling & Architecture [1,4]

Rail SAR [1,4]

Early Switched Array Prototype (0.5 Hz imager) [1,3,5]

TDM MIMO Real-Time Through-Wall Radar System

Time Line

Real-Time Inverse Synthetic Aperture Microscopy (ISAM) [2]

Challenges

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase image rate</td>
<td>Real-time SAR algorithm</td>
</tr>
<tr>
<td></td>
<td>Data-acquisition pipeline</td>
</tr>
<tr>
<td></td>
<td>1 ms UWB LFM waveform generation</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>LNAs</td>
</tr>
<tr>
<td></td>
<td>Transmit power</td>
</tr>
<tr>
<td></td>
<td>Feedline efficiency</td>
</tr>
<tr>
<td></td>
<td>Antenna efficiency</td>
</tr>
<tr>
<td>Image quality</td>
<td>High-isolation switches</td>
</tr>
<tr>
<td></td>
<td>UWB antenna element</td>
</tr>
<tr>
<td></td>
<td>Reduce mutual coupling</td>
</tr>
<tr>
<td></td>
<td>Reduce back lobes</td>
</tr>
</tbody>
</table>
Technical Approach

- Apply range-gated FMCW to TDM MIMO array
 - S-band, 2-4 GHz 1 ms LFM waveform
 - Separate transmitter and receiver
 - 8 receive and 13 transmit elements
 - TX ported to one element at a time
 - RX ported to one element at a time
TDM MIMO Bistatic Antenna Combinations

- Apply range-gated FMCW to TDM MIMO array
 - TX/RX to only one TX/RX element at any given time
 - 44 bi-static combinations of transmit + receive elements
 - Synthesizes 2.24 m long half-wave spaced linear phased array
 - Near-field solution
Multithreaded Python controls
- National Instruments data acquisition (DAQ) card
- Data ring buffers and data storage
- Software wrapper interface generator (SWIG) for C++
- Graphical user interface (GUI)
Real-Time Imaging Algorithm

- Range migration algorithm (RMA)

- Reducing latency in RMA
 - Provide direct memory access with minimal overhead copying
 - Call inline functions
 - Maintain high throughput by pre-allocating RAM
 - Utilize real-to-complex FFTs and hardware-accelerated routines

- Precompute values
 - Calibration matrix
 - Matched filter
 - Stolt transform resampling indices
 - Stolt transform interpolation tables
Free-Space Imagery Indoor Target Scene (high clutter environment)

Indoor clutter

Radar sensor

Targets placed on Styrofoam table

Indoor clutter
Measured Free-Space Data

- Using coherent background subtraction
- Using image-to-image coherent change detection

- Human playing marbles with 1-inch diameter spheres
- Human swinging 5-ft-long pipe (aka "Star Wars kid")
Through-Wall Target Scene

- Outdoor clutter
- 8" thick concrete wall
- 4" thick concrete wall
- Cinder-block wall
Humans Imaged Through Concrete Walls*

Two humans imaged in the four scenarios below

- In free space
- Behind 4" solid concrete wall
- Behind cinder block wall
- Behind 8" solid concrete wall

Using image-to-image coherent change detection

*Wall eliminated from image
Summary

• Results
 – Free-space imaging of low RCS targets and human action
 – Through-wall imaging of moving humans

• Benefits to this approach
 – Stand-alone sensor, stand-off range, continuous surveillance

• Objective: field rapid prototype

• Near-term plans
 – Free-space testing, verify system model
 – Test on walls

• Far-term goals
 – Optimum configuration trade space
 Frequency selection, resolution, wall loss budget
 Increase number of receiver elements
 Variations on array density
 Imaging rates