QUADRATICALLY CONSTRAINED RLS FILTERING
for ADAPTIVE BEAMFORMING
and DS-CDMA MULTI-USER DETECTION

Zhi Tian, Kristine L. Bell, and Harry L. Van Trees

C3I Center
George Mason University
Fairfax, VA 22030-4444
ztian@gmu.edu, kbell@gmu.edu, hlv@gmu.edu
Beamforming and DS-CDMA

- Exploit equivalence between
 - Minimum Output Energy (MOE) detector for Direct-Sequence Code Division Multiple Access (DS-CDMA) wireless communications systems
 - Linearly Constrained Minimum Power (LCMP) beamformer

- In both applications, a quadratic constraint on the weight vector norm can improve robustness to mismatch and low sample support
Variable Loading RLS

- Developed technique for implementing quadratic inequality constraint with Recursive Least Squares (RLS) updating

- RLS-VL has fast convergence and better performance than other RLS and Least Mean Square (LMS) implementations for both beamforming and DS-CDMA
DS-CDMA Signal Model

\[c_1 = [-1 \ 1 \ -1 \ 1]^T \]

User 1

\[T_s \]

\[T_c \]

\[c_2 = [1 \ 1 \ -1 \ -1]^T \]

User 2

bits code chips
DS-CDMA Signal Model

M-user, synchronous, DS-CDMA binary communications system in additive white Gaussian noise (AWGN) channel.

- Received baseband signal model:

$$x(t) = \sum_{k=-\infty}^{\infty} \sum_{m=1}^{M} A_m b_m(k) \left\{ \sum_{l=0}^{L-1} c_m(l) \psi(t - kT_s - lT_c) \right\} + \sigma_n n(t)$$

- A_m: amplitude of mth user’s signal
- $b_m(k)$: kth data bit of mth user
- $c_m(l)$: lth chip mth user’s code
- L: number of chips per symbol (processing gain)
- T_c: chip interval
- T_s: symbol interval ($= LT_c$)
- $\psi(t)$: chip waveform with support on $[0, T_c]$
- $n(t)$: AWGN with unit power spectral density
- σ_n^2: noise power spectral density
DS-CDMA Signal Model

- DS-CDMA data vector after matched filtering and sampling at chip rate

\[
x(k) = \sum_{m=1}^{M} A_m b_m(k)c_m + \sigma_n n(k)
\]

- Array processing data vector

\[
x(k) = \sum_{m=1}^{M} s_m(k)v_m + \sigma_n n(k)
\]

- Code vector \(c_m\) equivalent to array response vector \(v_m\)
- Source waveform is scaled \(k\)th data bit \(A_m b_m(k)\)
Challenges in DS-CDMA Wireless Communication Systems

- Co-channel multiple-user interference (CCI/MUI)
- Multi-path time-varying propagation environment
- Increase capacity by increasing throughput while allowing more users at lower and variable signal levels
Minimum Output Energy (MOE) Detector
(Honig, Madhow, Verdu (95), Schodorf and Williams (97))

- Optimization Problem
 \[
 \min \ w^H R_x w \quad \text{st. } C^H w = f
 \]

- Solution
 \[
 w = R_x^{-1} C \left[C^H R_x^{-1} C \right]^{-1} f.
 \]

- MOE: \(C = c_1, f = 1 \)

- Decorrelating Detector: \(C = [c_1 \ c_2 \ \cdots \ c_K], \ f = [1 \ 0 \ \cdots \ 0]^T \)

- Blind Implementation
Partitioned Linear Interference Canceler (PLIC)
(Schodorf and Williams (97))

- Equivalent to Generalized Sidelobe Canceler (GSC)
 (Griffiths and Jim (82))
Partitioned Linear Interference Canceler (PLIC)

- **Total weight vector** $L \times 1$
 \[w = w_c - Bw_a. \]

- **Quiescent weight vector** $L \times 1$
 \[w_c = C(C^H C)^{-1}f \]

- **Blocking matrix** $L \times (L - q)$
 \[B^H C = 0, \quad B^H B = I \]

- **Adaptive weight vector** $(L - q) \times 1$
 \[w_a = (B^H R_x B)^{-1}B^H R_x w_c \]
 \[= R_z^{-1} p_z \]
Quadratic Constraints and Robustness

- A quadratic inequality constraint on the weight vector norm of an adaptive MOE detector can improve robustness to mismatch in temporal signature vector due to multipath propagation

- In adaptive beamforming, the quadratic inequality constraint (white noise gain constraint) improves robustness to mismatch in steering vector due to pointing error and sensor perturbations
Quadratically Constrained MOE

- Quadratic constraints
 \[w^H w = w_c^H w_c + w_a^H B^H B w_a \leq T_0 \]
 \[w_a^H w_a \leq \beta^2 = T_0 - w_c^H w_c \]

- Optimization problem
 \[\min w^H R_x w \quad \text{st.} \quad C^H w = f, \quad w^H w \leq T_0 \]

- Direct form solution
 \[w = (R_x + \lambda I)^{-1} C \left[C^H (R_x + \lambda I)^{-1} C \right]^{-1} f \]

- PLIC/GSC solution
 \[w_a = (R_z + \lambda I)^{-1} p_z \]

- Same forms with a diagonal loading term added to \(R_x \) and \(R_z \)
Diagonal Loading

- Let \(\tilde{w}_a \) denote standard PLIC/GSC adaptive weight vector
 \[
 \tilde{w}_a = R_z^{-1} = \sum_{i=1}^{L-q} u_i \frac{u_i^H p_z}{\lambda_i}
 \]

- Let \(w_a \) denote quadratically constrained weight vector
 \[
 w_a = \sum_{i=1}^{L-q} u_i \frac{u_i^H p_z}{\lambda_i + \lambda} = \sum_{i=1}^{L-q} u_i \frac{\lambda_i}{\lambda_i + \lambda} \frac{u_i^H p_z}{\lambda_i}
 \]

 Each orthogonal component is scaled back by \(\lambda_i / (\lambda_i + \lambda) \)

- Optimal Diagonal Loading
 - For \(\lambda = 0 \), \(w_a = \tilde{w}_a \) (standard MOE adaptive weights)
 - For \(\lambda \rightarrow \infty \), \(w_a = 0 \) (quiescent weights)
 - Can show that \(w_a^H w_a \) is monotonically decreasing in \(\lambda \)
 - Start with \(\lambda = 0 \), increase until quadratic constraint met
Implementing Quadratic Constraint in MOE Detector

- No closed form solution for optimal loading level
- Can fix λ at reasonable level, but constraint will not always be met
- Optimal loading level depends on scenario, while a constant norm constraint can work well over a range of scenarios
- LMS implementations
 - LMS with Fixed Loading (Honig, Madhow, Verdu (95))
 - LMS with Scaled Projection (Schodorf and Williams (97) based on Cox, Zeskind, Owen (87))
- No RLS implementations with quadratic constraint
 - RLS without quadratic constraint (Poor and Wang (97))
LMS Implementations

- **LMS Scaled Projection**

 \[\tilde{w}_a(k) = w_a(k - 1) + \alpha z(k) (y_c^*(k) - z(k)^H w_a^H(k - 1)) \]

 if \[||\tilde{w}_a(k)||^2 \leq \beta^2 \], then \[w_a(k) = \tilde{w}_a(k) \]

 if \[||\tilde{w}_a(k)||^2 > \beta^2 \], then \[w_a(k) = \tilde{w}_a(k) \frac{\beta}{||\tilde{w}_a(k)||} \]

- **LMS Fixed Loading**

 \[w_a(k) = (I - \alpha \lambda) w_a(k - 1) + \alpha z(k) (y_c^*(k) - z(k)^H w_a^H(k - 1)) \]
RLS Variable Loading

(Tian, Bell, Van Trees (98))

- Rewrite adaptive weight vector

 \[w_a = (I + \lambda R_z^{-1})^{-1} R_z^{-1} p_z = (I + \lambda R_z^{-1})^{-1} \tilde{w}_a \]

- For small \(\lambda \)

 \[w_a \approx (I - \lambda R_z^{-1}) \tilde{w}_a = \tilde{w}_a - \lambda v_a \]

 where

 \[v_a = R_z^{-1} \tilde{w}_a \]

- Each component scaled back by \(1 - (\lambda/\lambda_i) \)

- Quadratic constraint yields closed form solution for \(\lambda \)

\[w_a^H w_a = \tilde{w}_a^H \tilde{w}_a - 2 \lambda \Re \{ \tilde{w}_a^H v_a \} + \lambda^2 v_a^H v_a \leq \beta^2 \]
RLS Implementation

- RLS algorithm updates unconstrained $\tilde{w}_a(k)$ and an estimate of R_z^{-1}, denoted by $P(k)$

\[
g(k) = \frac{\mu^{-1}P(k-1)z(k)}{1 + \mu^{-1}z^H(k)P(k-1)z(k)}
\]

\[
P(k) = \mu^{-1}P(k-1) - \mu^{-1}g(k)z^H(k)P(k-1)
\]

\[
e_p(k) = y_c(k) - w_a^H(k-1)z(k)
\]

\[
\tilde{w}_a(k) = w_a(k-1) + g(k)e^*_p(k)
\]
RLS Variable Loading Implementation

if \(\|\tilde{\mathbf{w}}_a(k)\|^2 \leq \beta^2 \)

\[
\mathbf{w}_a(k) = \tilde{\mathbf{w}}_a(k)
\]

else

\[
\mathbf{v}_a(k) = \mathbf{P}(k)\tilde{\mathbf{w}}_a(k)
\]

\[
a = \|\mathbf{v}_a(k)\|^2
\]

\[
b = -2\Re \{\mathbf{v}_a(k)^H \tilde{\mathbf{w}}_a(k)\}
\]

\[
c = \|\tilde{\mathbf{w}}_a(k)\|^2 - \alpha^2
\]

\[
\lambda(k) = \frac{-b - \Re \{\sqrt{b^2 - 4ac}\}}{2a}
\]

\[
\mathbf{w}_a(k) = \tilde{\mathbf{w}}_a(k) - \lambda(k)\mathbf{v}_a(k)
\]

end.
Beamforming Example: Pointing Error
(from Tian, Bell, Van Trees (98))

- 10 element ULA, $d = \lambda/2$, steered to the broadside
- Source at $\cos(\theta_s) = -0.03$, SNR = 10dB
- Two interferers at $\cos(\theta_1) = 0.29$ and $\cos(\theta_2) = 0.45$, INR = 20dB
- Tolerance factor $T_o = 2/N$
DS-CDMA Example: Multipath

- 15 dB Desired user with $L = 31$ Gold Code
- Seven 15 dB interferers, new 25 dB interferer added at $k = 500$
- Dominant path plus one multipath delayed by 3 chips
- Tolerance factor $T_o = 2/L$
DS-CDMA Example: Multipath

- Desired user with $L = 31$ Gold Code
- Seven interferers with INR=SNR
- One interferer with INR = SNR+10 dB
- Dominant path plus one multipath delayed by 3 chips
- Tolerance factor $T_o = 2/L$
Summary

- Developed RLS-VL technique to implement quadratic constraint with RLS
 - Provides variable, approximate diagonal loading
 - Does not increase contributions significantly

- Applied RLS-VL to MOE DS-CDMA detector by exploiting equivalence with LCMP beamformer
 - Improves robustness in multipath environment
 - Converges faster than robust LMS versions