Adaptive Beamformer Orthogonal Rejection Test (ABORT)

Nicholas Pulsone and Charles Rader

This work was sponsored by the United States Navy under Air Force Contract F19628-95-C-0002. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Air Force or the United States Navy.
Detection Ambiguities in Adaptive Arrays

Detect Mainlobe Targets

Blank Detects due to Sidelobe Targets or Clutter Discretes

Mitigate Interference / Jamming
Outline

• Previous Work on Adaptive Detection
• “ABORT” - a new Adaptive Detection Algorithm
• Analysis and Performance Results
• Summary
Adaptive Detection Problem

HYPOTHESIS TESTING

Complex Test Vector \(x = \begin{cases} n & \text{noise only hypothesis } H_0 \\ a v + n & \text{signal in noise hypothesis } H_1 \end{cases} \)

ASSUMPTIONS

<table>
<thead>
<tr>
<th>Unknown</th>
<th>Complex Signal Scalar</th>
<th>1×1</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Covariance Matrix</td>
<td>N×N</td>
<td>(R = E{nn^H})</td>
<td>Zero-mean complex Gaussian noise</td>
</tr>
<tr>
<td>Given</td>
<td>Test Vector</td>
<td>N×1</td>
<td>x</td>
</tr>
<tr>
<td>IID Training Vectors</td>
<td>N×1</td>
<td>(x_i ; i = 1, \ldots, K)</td>
<td>Noise-only samples ((H_0))</td>
</tr>
<tr>
<td>Signal Vector</td>
<td>N×1</td>
<td>v</td>
<td></td>
</tr>
</tbody>
</table>
Earlier Adaptive Detection Tests

Adaptive Matched Filter (AMF)
Robey, et. al.

\[t_{AMF} = \frac{v_S^H S^{-1} x}{v_S^H S^{-1} v_S} \]

H_1 > \eta_{AMF}
H_0

Generalized Likelihood Ratio Test (GLRT)
Kelly

\[t_{GLRT} = \frac{t_{AMF}}{1 + x^H S^{-1} x} \]

H_1 > \eta_{GLRT}
H_0

Adaptive Coherency Estimator (ACE)
Conte, Scharf

\[t_{ACE} = \frac{t_{AMF}}{x^H S^{-1} x} \]

H_1 > \eta_{ACE}
H_0

DEFINITIONS
Steering Vector \(v_S \)
Test Vector \(x \)
Sample Covariance Matrix \(S = \sum_{k=1}^{K} x_k x_k^H \)
Signal Mismatch and SINR

Signal Vector

$$x = a v + n$$

Steering Vector

$$t_{AMF} = \frac{|v_s^H S^{-1} x|^2}{v_s^H S^{-1} v_s}$$

Signal mismatch angle θ, measured in whitened N-space

$$\cos^2 \theta = \frac{|v_s^H R^{-1} v|^2}{(v_s^H R^{-1} v_s)(v_s^H R^{-1} v)}$$

- Matched Case
 $$v = v_s$$
 $$\cos^2 \theta = 1$$

- Mainbeam Detector Performance
 $$v \approx v_s$$
 $$\alpha \leq \cos^2 \theta < 1$$

- Mismatched Case
 $$v \neq v_s$$
 $$0 \leq \cos^2 \theta < 1$$

- Sidelobe Detector Performance

Signal to Interference-plus-Noise Ratio

$$\text{SINR} = |a|^2 v^H R^{-1} v$$
Desirable Detection Performance

Probability of Detection vs SINR

Ideal Performance
Realistic Performance
Mesa Plot Comparison

\[N = 5, \ K = 25, \ P_{FA} = 10^{-4} \]

- **AMF**
 - Poor mismatch signal discrimination
 - Good matched signal SNR performance

- **ACE**
 - Good mismatch signal discrimination
 - Poor matched signal SNR performance

- **GLRT**
 - Mismatch signal performance between AMF and ACE
 - Matched signal SNR performance comparable to AMF
Adaptive Sidelobe Blanker

$N = 5, \ K = 25$

Test Vectors

AMF

Yes

$\mathbf{t_{AMF}} > \eta_{AMF}$

No

H_0

ACE

Yes

$\mathbf{t_{ACE}} > \eta_{ACE}$

No

H_0

H_1

† ASAP 1996 - 1998
Kreithen, Baranoski, and Richmond

P_{FA}

10^{-6}

10^{-5}

10^{-4}

10^{-3}

$\cos^2(\theta)$

0.0001

0.001

0.01

0.1

0.5

0.9

$\mathbf{\text{ASB Threshold Pairs}}$

$\mathbf{\text{SINR [dB]}}$
Adaptive Sidelobe Blanker

\[N = 5, \ K = 25 \]

Test Vectors

\[t_{\text{AMF}} > \eta_{\text{AMF}} \]

Yes

\[t_{\text{ACE}} > \eta_{\text{ACE}} \]

Yes

\[\mathcal{H}_1 \]

No

\[\mathcal{H}_0 \]

\[\mathcal{H}_0 \]

† ASAP 1996 - 1998
Kreithen, Baranoski, and Richmond

ASB Threshold Pairs

\[P_{\text{FA}} \]
\[10^{-6} \]
\[10^{-5} \]
\[10^{-4} \]
\[10^{-3} \]

\[\cos^2(\theta) \]

\[\text{SINR [dB]} \]

0 1 0 2 0 3 0
0
0.2
0.4
0.6
0.8
1
0 10 20 30
K \eta_{\text{AMF}}
Adaptive Sidelobe Blanker

N = 5, K = 25

Test Vectors

AMF

Yes

ACE

Yes

H1

No

No

H0

H0

‡ ASAP 1996 - 1998
Kreithen, Baranoski, and Richmond

ASB Threshold Pairs

PFA

10^{-6}

10^{-5}

10^{-4}

10^{-3}

ηACE

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

K ηAMF

0

10

20

30

SINR [dB]

cos^2(θ)

0

0.2

0.4

0.6

0.8

1

0.001

0.0001

0.1

0.5

0.9

‡ ASAP2000-11
NBP 03/29/2000
Adaptive Sidelobe Blanker

\[N = 5, \quad K = 25 \]

Test Vectors

\[t_{\text{AMF}} > \eta_{\text{AMF}} \]

\[\text{No} \]

\[t_{\text{ACE}} > \eta_{\text{ACE}} \]

\[\text{Yes} \]

\[\text{Yes} \]

\[H_1 \]

\[H_0 \]

† ASAP 1996 - 1998
Kreithen, Baranoski, and Richmond
Adaptive Sidelobe Blanker

\[N = 5, \ K = 25 \]

Test Vectors

- \(t_{\text{AMF}} > \eta_{\text{AMF}} \) Yes
 - AMF
 - \(\text{No} \)
 - \(H_0 \)

- \(t_{\text{ACE}} > \eta_{\text{ACE}} \) Yes
 - ACE
 - \(\text{No} \)
 - \(H_0 \)

\[\eta \text{ ACE} > \eta \text{ AMF} > \eta \]

\[\text{SINR [dB]} \]

\[\cos^2(\theta) \]

\[P_{\text{FA}} \]

- \(10^{-6} \)
- \(10^{-5} \)
- \(10^{-4} \)
- \(10^{-3} \)

\[\text{ASB Threshold Pairs} \]

\[\text{† ASAP 1996 - 1998} \]

Kreithen, Baranoski, and Richmond
Adaptive Sidelobe Blanker †

\[
N = 5, \quad K = 25
\]

Test Vectors

- \(t_{AMF} > \eta_{AMF} \)
 - Yes \(\rightarrow H_1 \)
 - No \(\rightarrow H_0 \)

- \(t_{ACE} > \eta_{ACE} \)
 - Yes \(\rightarrow H_1 \)
 - No \(\rightarrow H_0 \)

† ASAP 1996 - 1998
Kreithen, Baranoski, and Richmond

\[\cos^2(\theta) \]

\[P_{FA} \]

- \(10^{-6} \)
- \(10^{-5} \)
- \(10^{-4} \)
- \(10^{-3} \)

\[\eta_{ACE} \]

\[K \eta_{AMF} \]
Outline

• Previous Work on Adaptive Detection

• “ABORT” - a new Adaptive Detection Algorithm

• Analysis and Performance Results

• Summary
Assumptions for Two-step Detection

Detection Hypotheses (Test 1)

\[
x = \begin{cases}
 n & \text{noise only hypothesis } H_0 \\
 a\mathbf{v} + n & \text{signal in noise hypothesis } H_1
\end{cases}
\]

Sidelobe Blanking Hypotheses (Test 2)

\[
x = \begin{cases}
 a\mathbf{v}_\perp + n & \text{orthogonal signal in noise } H_0 \\
 a\mathbf{v} + n & \text{signal in noise } H_1
\end{cases}
\]

Assumptions

<table>
<thead>
<tr>
<th>Unknown</th>
<th>Complex Signal Scalar</th>
<th>Noise Covariance Matrix</th>
<th>Test Vector</th>
<th>IID Training Vectors</th>
<th>Signal Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex Signal Scalar</td>
<td>1 \times 1</td>
<td>\mathbf{a}</td>
<td>\mathbf{N} \times \mathbf{N}</td>
<td>R = \mathbb{E} { \mathbf{n}\mathbf{n}^H }</td>
<td>\mathbf{N} \times 1</td>
</tr>
<tr>
<td>Noise Covariance Matrix</td>
<td>\mathbf{N} \times \mathbf{N}</td>
<td>\mathbf{R}</td>
<td>\mathbf{N} \times 1</td>
<td>\mathbf{x}_k ; k = 1, \ldots, K</td>
<td>\mathbf{N} \times 1</td>
</tr>
<tr>
<td>Test Vector</td>
<td>\mathbf{N} \times 1</td>
<td>\mathbf{x}</td>
<td>Noise-only samples</td>
<td>Noise-only samples</td>
<td>Noise-only samples</td>
</tr>
</tbody>
</table>

Zero-mean complex Gaussian noise
Likelihood Ratio Formulation for Test 2

\[
x = \begin{cases}
 \mathbf{a} \mathbf{v}^\perp + \mathbf{n} & \text{orthogonal signal in noise } H_0 \\
 \mathbf{a} \mathbf{v} + \mathbf{n} & \text{signal in noise } H_1
\end{cases}
\]

\[
x_k = \mathbf{n} ; \ k = 1, \ldots, K \quad \text{noise only}
\]

IID Training Vectors

\[
f(\mathbf{R}, \mathbf{a} \mathbf{y} | \mathbf{x}, \mathbf{x}_1, \ldots, \mathbf{x}_K) = \left[\frac{\exp\left\{- \text{tr} \left(\mathbf{R}^{-1} \mathbf{T} \right) \right\}}{\pi^N | \mathbf{R} |} \right]^{K+1}
\]

Likelihood Function

\[
\mathbf{T} \equiv \frac{1}{K+1} \left\{ (\mathbf{x} - \mathbf{a} \mathbf{y})^H (\mathbf{x} - \mathbf{a} \mathbf{y}) + \sum_{k=1}^{K} \mathbf{x}_k \mathbf{x}_k^H \right\}
\]

\[
y \equiv \begin{cases}
 \mathbf{v}^\perp & \text{under } H_0 \\
 \mathbf{v} & \text{under } H_1
\end{cases}
\]

GLR Approach: Maximize likelihood function over unknown parameters under each hypothesis
Likelihood Ratio Formulation for Test 2 continued

\[f(R, ay \mid x, x_1, \ldots, x_K) = \left[\frac{\exp\{- \text{tr} (R^{-1} T)\}}{\pi^N \mid R \mid} \right]^{K+1} \]

Likelihood Function

\[m = \max_R \{ f(R, a) \} = \left\{ (e\pi)^N \mid T \mid \right\}^{-K-1} \]

Maximize over unknown covariance matrix

\[m_0 = \max_a \{ m \} = \left\{ \mid S \mid (1 + t_{AMF}) \right\}^{-K-1} \]

Maximize over unknown orthogonal signal (\(H_0\))

\[m_1 = \max_a \{ m \} = \left\{ \mid S \mid (1 + x^H S^{-1} x - t_{AMF}) \right\}^{-K-1} \]

Maximize over unknown signal multiplier (\(H_1\))

Form Likelihood Ratio Test

\[t = \left(\frac{m_1}{m_0} \right)^{\frac{1}{K+1}} = \frac{1 + t_{AMF}}{(1 + x^H S^{-1} x - t_{AMF})} \]

\(H_1 \begin{cases} \text{if } > \eta \\ \text{if } < \eta \end{cases}\)

\(H_0\)

Equivalent Form of Test

\[\tilde{t} = \frac{1 + t_{AMF}}{(2 + x^H S^{-1} x)} \]

\(H_1 \begin{cases} \text{if } > \tilde{\eta} \\ \text{if } < \tilde{\eta} \end{cases}\)

\(H_0\)
Efficient Procedure for ABORT

Test Vectors → AMF $t_{AMF} > \eta_{AMF}$ → Yes

Test Vectors → ABORT $\bar{t} > \bar{\eta}$ → Yes

Yes

No

No

H_0

H_0

H_1

Test 1

$t_{AMF} = \frac{v^H S^{-1} x}{v^H S^{-1} v} > \eta_{AMF}$

Test each observation x

Test 2

$\bar{t} = \frac{1 + t_{AMF}}{2 + x^H S^{-1} x} > \bar{\eta}$

Test observations that pass previous test

Note: If we select thresholds such that $\eta_{AMF} \leq 1 / (\bar{\eta} - 1)$

Then the 2-step procedure has detection performance equivalent to Test 2
Outline

• Previous Work on Adaptive Detection
• “ABORT” - a new Adaptive Detection Algorithm
• Analysis and Performance Results
• Summary
Example Problem

- Developed analytical expressions for P_D and P_{FA}
 - Details provided in proceedings
- Verified P_D with 10,000 independent Monte Carlo trials
- $N = 5$ channels
- $K = 25$ training vectors
- Choose thresholds so that $P_{FA} = 10^{-4}$
- Vary SINR over $0 \text{ dB} \leq \text{SINR} \leq 25 \text{ dB}$
- Vary mismatch angle over $0 \leq \cos^2 \theta \leq 1$
Mesa Plot for ABORT

N = 5, K = 25, \(P_{FA} = 10^{-4} \)

Mismatch signal performance is between GLRT and ACE
Matched signal performance comparable to GLRT and AMF
Mesa Plot Comparison

\(N = 5, \ K = 25, \ P_{FA} = 10^{-4} \)

- AMF
- GLRT
- ACE
- ABORT
- ASB

Cos\(^2(\theta)\) vs. SINR [dB]

ASB Threshold Pairs

\(\eta_{ACE} \) vs. \(K \eta_{AMF} \)
Mesa Plot Comparison

$N = 5, \ K = 25, \ P_{FA} = 10^{-4}$
Mesa Plot Comparison

$N = 5, \ K = 25, \ P_{FA} = 10^{-4}$

- AMF
- GLRT
- ACE
- ABORT
- ASB

$\cos^2(\theta)$ vs. SINR [dB]

ASB Threshold Pairs

η_{ACE} vs. $K \eta_{\text{AMF}}$
Mesa Plot Comparison

$N = 5, \ K = 25, \ P_{FA} = 10^{-4}$
Mesa Plot Comparison

$N = 5, \; K = 25, \; P_{FA} = 10^{-4}$
Mesa Plot Comparison

\(N = 5, \ K = 25, \ P_{FA} = 10^{-4} \)

AMF

GLRT

ACE

ABORT

ASB

\(\cos^2(\theta) \)

\(\text{SINR [dB]} \)

\(\cos^2(\theta) \)

\(\text{SINR [dB]} \)

\(\cos^2(\theta) \)

\(\text{SINR [dB]} \)

\(\eta_{\text{ACE}} \)

\(K \eta_{\text{AMF}} \)
Slice through Mesa Plot at SINR = 20dB

$N = 5$, $K = 25$, $P_{FA} = 10^{-4}$

ABORT mismatch performance between GLRT and ACE
Slice through mesa plot at $\cos^2 \theta = 1$

$N = 5, \ K = 25, \ P_{FA} = 10^{-4}$

AMF, GLRT and ABORT have similar matched signal performance

Approximately 5 dB in SINR Loss with ACE
Detector Performance Overview
Summary

• Developed and analyzed the Adaptive Beamformer Orthogonal Rejection Test (ABORT)
 – Generalized Likelihood Ratio Test to discriminate signals in one subspace from signals in an orthogonal subspace

• ABORT compares favorably relative to one-step tests (AMF, ACE and GLRT) and a two-step test (ASB)
 – Improved sidelobe rejection performance relative to AMF, GLRT
 – Mainlobe detection performance commensurate with AMF and GLRT
 – ABORT provides a good compromise of mainbeam detection and sidelobe rejection without sensitivity to target SINR (as with ASB)

• Implement as second test in a two-test approach (AMF followed by ABORT) for computational efficiency