ARM Cortex-A9 performance in HPC applications
Kurt Keville, Clark Della Silva, Merritt Boyd

- ARM gaining market share in embedded systems and SoCs
- Current processors include the ARM9 series, the Cortex-A8, and the Cortex-A9
- ~15 Billion ARM chips shipped to date

- Thumb / Thumb-2
 - More efficient instruction encoding, better code density
 - Higher performance for select applications
- VFP v3
 - Floating point co-processor
- NEON
 - SIMD Extensions
 - Up to 4x 32-bit floating point operations per instruction
 - No double precision
ARM Cortex-A8 and Cortex-A9

- Uses the ARMv7-A architecture
 - Thumb-2, NEON, VFP v3
- Systems
 - TI BeagleBoard (1GHz)
 - Genesi Efika-MX (800MHz)
 - Gumstix Overo Earth (600MHz)

- Uses ARMv7-A architecture
 - Thumb-2, NEON, VFP v3
- Available in single and dual core packages, quads upcoming (A6, Tegra 3)
- Systems
 - TI PandaBoard (dual 1GHz)
 - NuFront NuSmart (dual 1.2GHz)
TI PandaBoard Results

- 3.0 Gflop/s SP NEON, 1.2 Gflop/s DP (HPL)
- Power consumption
 - Idle: ~4 Watts / board, Full load: ~7.5 Watts / board

- Software & Hardware Challenges
 - Most libraries assume x86 / x86-64, No precompiled binaries (unavailable or unoptimized), Compiler support immature (-mcpu=cortex-a9, -mhard-float)
 - Limited RAM on some systems, Low-quality networking hardware and software, Few possibilities for expansion, Reliability issues

- Energy Efficiency
 - 2 Gflop/s / Watt gets you #1 on Green500
 - PandaBoard is $175, and 18 square inches
 - \(\frac{0.4 \text{ Gflop/s}}{\text{Watt}} \), 0.0074 Gflop/s / $, and 0.072 Gflop/s / square inch
Looking Ahead: Embedded GPUs

- Most SoCs include a GPU, e.g. PVR SGX 540 (PandaBoard)
- Potential for mixed CPU-GPU computation
- OpenCL support, pending release of drivers on TI SoCs, available for Apple Hardware
- ARM Cortex-A15 with PVR series 6 GPU
 - Much more powerful and better suited for computation
- Tegra 3 & 4
 - Potential for Cuda Support