Rad Hard By Software for Space Multicore Processing

David Bueno, Eric Grobelny, Dave Campagna, Dave Kessler, and Matt Clark
Honeywell Space Electronic Systems, Clearwater, FL

HPEC 2008 Workshop
September 25, 2008
Outline

• Rad Hard By Software Overview

• ST8 Dependable Multiprocessor

• Next-Generation Dependable Multiprocessor Testbed

• Performance Results

• Conclusions and Future Work
Why Rad Hard By Software?

• Future payloads can be expected to require high performance data processing

• Traditional component hardening approaches to rad hard processing suffer several key drawbacks
 - Large capability gap between rad hard and COTS processors
 - Poor SWaP characteristics vs. processing capacity
 - Extremely high cost vs. processing capacity
 - Dissimilarity with COTS technology drives high-cost software development units

• Honeywell Rad Hard By Software (RHBS) approach solves these problems by moving most data processing to high performance COTS single board computers
 - Leading edge capability
 - Software fault mitigation = less hardware = reduced SWaP
 - Inexpensive
 - No difference between development and flight hardware
 - COTS software development tools and familiar programming models
DM Technology Advance: Overview

- A high-performance, COTS-based, fault tolerant cluster onboard processing system that can operate in a natural space radiation environment

 • high throughput, low power, scalable, & fully programmable >300 MOPS/watt (>100)
 • high system availability >0.995 (>0.95)
 • high system reliability for timely and correct delivery of data >0.995 (>0.95)
 • technology independent system software that manages cluster of high performance COTS processing elements
 • technology independent system software that enhances radiation upset tolerance

NASA Level 1 Requirements (Minimum)

Benefits to future users if DM ST8 experiment is successful:
- 10X – 100X more delivered computational throughput in space than currently available
- enables heretofore unrealizable levels of science data and autonomy processing
- faster, more efficient applications software development
 -- robust, COTS-derived, fault tolerant cluster processing
 -- port applications directly from laboratory to space environment
 --- MPI-based middleware
 --- compatible with standard cluster processing application software including existing parallel processing libraries
- minimizes non-recurring development time and cost for future missions
- highly efficient, flexible, and portable SW fault tolerant approach applicable to space and other harsh environments
- DM technology directly portable to future advances in hardware and software technology
Next Generation DM Testbed

- Dependable Multiprocessor (DM) is Honeywell’s first-generation Rad Hard By Software technology
- Coarse-grained software-based fault detection and recovery
 - Similar to the way modern communication protocols detect errors at the packet level rather than the byte level
 - Rad Hard By Software detects errors at the “operation” rather than the instruction level
- Typical system
 - One low-performance rad-hard SBC for “cluster” monitoring and severe upset recovery
 - Could also serve as spacecraft control processor
 - One or more high-performance COTS SBCs for data processing
 - Connected via high-speed interconnects
 - One or more fault-tolerant storage/memory cards for shared memory
 - Dependable Multiprocessing (DM) software stack

This work applies DM to multicore/multiprocessor targets including the PA Semi PA6T-1682M, Freescale 8641D, and IBM 970FX
DMM Software Stack

DMM – Dependable Multiprocessor Middleware

Science/Defense Application

Application Programming Interface (API)

Application

Generic Fault Tolerant Framework

OS/Hardware Specific

High-performance COTS Data Processor

DMM

OS – Linux

OS – WindRiver VxWorks 5.5

Rad Hard SBC

Gigabit Ethernet

DMM components and agents

SAL
(System Abstraction Layer)

Mission Specific Applications

Policies Configuration Parameters

S/C Interface SW and SOH And Exp. Data Collection

Mission Specific Applications

S/C Interface SW and SOH And Exp. Data Collection

Mission Specific Applications

Policies Configuration Parameters

DMM – Dependable Multiprocessor Middleware

Application

Specific

System Controller

DMM

Gigabit Ethernet

SAL
(System Abstraction Layer)
Application Benchmark Overview

• FFTW
 - 1K-, 8K-, or 64K-point radix-2 FFT (FFTW1K, FFTW8K, FFTW64K)
 - Single-precision floating point
 - Supports multi-threading via small alterations (~5 lines) to application source code and linking multi-threaded FFTW library

• Matrix Multiply
 - 800x800 and 3000x3000 variants (MM800/MM3000)
 - Single-precision floating point
 - Uses ATLAS/BLAS linear algebra libraries
 - Supports transparent multi-threading by linking the pthreads version of the BLAS library

• Hyper-Spectral Imaging (HSI) detection and classification
 - 256x256x512 data cube
 - Single-precision floating point
 - Uses ATLAS/BLAS linear algebra libraries
 - Supports transparent multi-threading by linking the pthreads version of the BLAS library
Application Performance Results

• Next-gen architectures provide significant performance improvement over existing DM 7447A (ST8 Baseline) for each application
• Largest speedups on large matrix multiply
 - Best exploits parallelism in multi-core architectures
• FFTW does not efficiently exploit both processor cores, limiting speedup
• PA Semi provides 5x performance of DM ST8 baseline for HSI application
 - Advantage over 8641D and 970FX for HSI largely due to custom-built ATLAS 3.8.2 BLAS library for PA Semi vs. 3.5.1 precompiled binary library for others
One-Thread vs. Two-Thread PA Semi Results

- Nearly 2x speedup provided for 3000x3000 matrix multiply
 - Smaller matrix multiply suffers due to dataset size
- HSI application speedup limited to 1.63x by highly serialized Weight Computation stage
 - Autocorrelation Sample Matrix (ACSM) and Target Classification stages take advantage of both cores fairly efficiently
- FFTW actually slowed down for multi-core implementations
 - Suspect likely due to inefficiencies in fine-grain parallelization of 1D FFT, expect much better performance for 2D FFTs with coarse-grain parallelization
- Similar trends observed on 8641D (and 970FX SMP with 2 processors)

| Dual-Threaded PA Semi Speedup (Slowdown) vs. Single-Threaded PA Semi |
|----------------|----------------|----------------|----------------|----------------|----------------|
| | MM800 | MM3000 | HSI | FFTW1K | FFTW8K | FFTW64K |
| 1.64 | 1.93 | 1.63 | (6.10) | (1.41) | (1.05) |
Comparison to “State-of-the-Art” for Space

- Reference architecture is a 233 MHz PowerPC 750 with 512 KB of L2 cache
- Base DM system provides ~10x speedup over PPC750 for FFTW and MM800
- More modern architectures improve upon this speedup by 2-4x
- Other applications did not run on PPC750 due to memory limitations
Estimated Throughput Density

- PA Semi provides significant throughput density enhancements vs. 8641D and ST8 7447a
- All architectures provide 1+ order of magnitude throughput density enhancement vs. PPC 750
- HSI throughput density conservative in most cases
 - Op count only includes ACSM stage which accounts for ~90% of execution time, but time includes all compute stages
 - 8641D version still suffers due to older ATLAS library
- Assumes:
 - 12W for 7447A board
 - 20W for PA Semi board
 - 35W for 8641D board
 - 7W for 233 MHz PPC 750 board
- 970FX not appropriate for space systems and not included
Summary

- **DM provides a low-overhead approach for increasing availability and reliability of COTS hardware in space**
 - DM easily portable to most Linux-based platforms
 - 7447a processing platform selected near start of NASA/JPL ST8 program (DM), but better options now exist

- **Modern processing platforms provided impressive overall speedups for existing DM applications with no additional development effort**
 - ~5-6x speedup vs. existing 7447a-based DM platform
 - Leverages optimized libraries for SIMD and multiprocessing
 - ~2-3x gain in throughput density (MFLOPS/W) vs. existing DM solution
 - ~20-40x performance of state-of-the-art rad hard by process solutions

- **Potential future work**
 - Exploration of high-speed networking technologies with DM
 - Enhancements to DM middleware for performance/availability/reliability
 - Explore options for using additional cores to increase reliability

- **Explore additional general purpose multicore next-generation processing engines**
 - Purchase of PA Semi by Apple potentially makes it a less attractive solution
 - New Freescale 2- and 8-core devices at 45nm are a possible alternative

- **Explore port of DM to advanced multicore architectures**
 - Tilera TILE64
 - Cell Broadband Engine
 - Further evaluation of future processing platforms (rad testing, etc.)

DM enables high-performance space computing with modern COTS processing engines