Accelerating Floating Point DGEMM on FPGAs

Martin Langhammer
Tom VanCourt
Altera Corp.

Approved for public release; distribution is unlimited.
Floating Point on FPGAs

- “But FPGAs can't …”
 - But they CAN!

- FP operation:
 1) Normalize operands
 Add/sub/mul/div
 Normalize result
 2) Normalize operands
 Add/sub/mul/div
 Normalize result
 3) Normalize operands
 Add/sub/mul/div
 Normalize result
 4) ...

- FP compiler
 - Create fused data paths
 - Insert guard bits to reduce normalizations
 - Selection context-sensitive operation blocks

- Improved performance
 - Logic reduction: to 40%
 - Latency reduction: to 40%
 - Clock rates: to 200 MHz
Matrix Multiplication

- Decompose arrays into blocks
 - Large (M144K) RAMs hold column values
 - Small (M9K) RAMs present new row every cycle
 - Configurable to 128 DP values – 8Kb per cycle

- Launch new dot product every cycle
 - Pipelined: 128 mult + 127 add = 255 FLOP/cycle
 - (255 FLOP/cycle) * (~200M cycle/sec) = ~50G FLOP/s

- Data rate sustained until throttled by system bus
 - Operation concurrency: 100s of dedicated multipliers
 - Data concurrency: 100s of independently addressable RAMs

- Competitive with Xeon, GPGPU
 - In sustained performance and MFLOP/s per Watt